3.2101 \(\int (a+b x) (d+e x)^{3/2} (a^2+2 a b x+b^2 x^2)^{3/2} \, dx\)

Optimal. Leaf size=264 \[ \frac{2 b^4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{13/2}}{13 e^5 (a+b x)}-\frac{8 b^3 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{11/2} (b d-a e)}{11 e^5 (a+b x)}+\frac{4 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{9/2} (b d-a e)^2}{3 e^5 (a+b x)}-\frac{8 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2} (b d-a e)^3}{7 e^5 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^4}{5 e^5 (a+b x)} \]

[Out]

(2*(b*d - a*e)^4*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^5*(a + b*x)) - (8*b*(b*d - a*e)^3*(d + e*
x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^5*(a + b*x)) + (4*b^2*(b*d - a*e)^2*(d + e*x)^(9/2)*Sqrt[a^2 + 2*
a*b*x + b^2*x^2])/(3*e^5*(a + b*x)) - (8*b^3*(b*d - a*e)*(d + e*x)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(11*e
^5*(a + b*x)) + (2*b^4*(d + e*x)^(13/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(13*e^5*(a + b*x))

________________________________________________________________________________________

Rubi [A]  time = 0.102775, antiderivative size = 264, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 35, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.086, Rules used = {770, 21, 43} \[ \frac{2 b^4 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{13/2}}{13 e^5 (a+b x)}-\frac{8 b^3 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{11/2} (b d-a e)}{11 e^5 (a+b x)}+\frac{4 b^2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{9/2} (b d-a e)^2}{3 e^5 (a+b x)}-\frac{8 b \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{7/2} (b d-a e)^3}{7 e^5 (a+b x)}+\frac{2 \sqrt{a^2+2 a b x+b^2 x^2} (d+e x)^{5/2} (b d-a e)^4}{5 e^5 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x)*(d + e*x)^(3/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(2*(b*d - a*e)^4*(d + e*x)^(5/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(5*e^5*(a + b*x)) - (8*b*(b*d - a*e)^3*(d + e*
x)^(7/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(7*e^5*(a + b*x)) + (4*b^2*(b*d - a*e)^2*(d + e*x)^(9/2)*Sqrt[a^2 + 2*
a*b*x + b^2*x^2])/(3*e^5*(a + b*x)) - (8*b^3*(b*d - a*e)*(d + e*x)^(11/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(11*e
^5*(a + b*x)) + (2*b^4*(d + e*x)^(13/2)*Sqrt[a^2 + 2*a*b*x + b^2*x^2])/(13*e^5*(a + b*x))

Rule 770

Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dis
t[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])), Int[(d + e*x)^m*(f + g*x)*(b/2 + c
*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[b^2 - 4*a*c, 0]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int (a+b x) (d+e x)^{3/2} \left (a^2+2 a b x+b^2 x^2\right )^{3/2} \, dx &=\frac{\sqrt{a^2+2 a b x+b^2 x^2} \int (a+b x) \left (a b+b^2 x\right )^3 (d+e x)^{3/2} \, dx}{b^2 \left (a b+b^2 x\right )}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int (a+b x)^4 (d+e x)^{3/2} \, dx}{a b+b^2 x}\\ &=\frac{\left (b \sqrt{a^2+2 a b x+b^2 x^2}\right ) \int \left (\frac{(-b d+a e)^4 (d+e x)^{3/2}}{e^4}-\frac{4 b (b d-a e)^3 (d+e x)^{5/2}}{e^4}+\frac{6 b^2 (b d-a e)^2 (d+e x)^{7/2}}{e^4}-\frac{4 b^3 (b d-a e) (d+e x)^{9/2}}{e^4}+\frac{b^4 (d+e x)^{11/2}}{e^4}\right ) \, dx}{a b+b^2 x}\\ &=\frac{2 (b d-a e)^4 (d+e x)^{5/2} \sqrt{a^2+2 a b x+b^2 x^2}}{5 e^5 (a+b x)}-\frac{8 b (b d-a e)^3 (d+e x)^{7/2} \sqrt{a^2+2 a b x+b^2 x^2}}{7 e^5 (a+b x)}+\frac{4 b^2 (b d-a e)^2 (d+e x)^{9/2} \sqrt{a^2+2 a b x+b^2 x^2}}{3 e^5 (a+b x)}-\frac{8 b^3 (b d-a e) (d+e x)^{11/2} \sqrt{a^2+2 a b x+b^2 x^2}}{11 e^5 (a+b x)}+\frac{2 b^4 (d+e x)^{13/2} \sqrt{a^2+2 a b x+b^2 x^2}}{13 e^5 (a+b x)}\\ \end{align*}

Mathematica [A]  time = 0.0991795, size = 172, normalized size = 0.65 \[ \frac{2 \sqrt{(a+b x)^2} (d+e x)^{5/2} \left (286 a^2 b^2 e^2 \left (8 d^2-20 d e x+35 e^2 x^2\right )+1716 a^3 b e^3 (5 e x-2 d)+3003 a^4 e^4+52 a b^3 e \left (40 d^2 e x-16 d^3-70 d e^2 x^2+105 e^3 x^3\right )+b^4 \left (560 d^2 e^2 x^2-320 d^3 e x+128 d^4-840 d e^3 x^3+1155 e^4 x^4\right )\right )}{15015 e^5 (a+b x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x)*(d + e*x)^(3/2)*(a^2 + 2*a*b*x + b^2*x^2)^(3/2),x]

[Out]

(2*Sqrt[(a + b*x)^2]*(d + e*x)^(5/2)*(3003*a^4*e^4 + 1716*a^3*b*e^3*(-2*d + 5*e*x) + 286*a^2*b^2*e^2*(8*d^2 -
20*d*e*x + 35*e^2*x^2) + 52*a*b^3*e*(-16*d^3 + 40*d^2*e*x - 70*d*e^2*x^2 + 105*e^3*x^3) + b^4*(128*d^4 - 320*d
^3*e*x + 560*d^2*e^2*x^2 - 840*d*e^3*x^3 + 1155*e^4*x^4)))/(15015*e^5*(a + b*x))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 202, normalized size = 0.8 \begin{align*}{\frac{2310\,{x}^{4}{b}^{4}{e}^{4}+10920\,{x}^{3}a{b}^{3}{e}^{4}-1680\,{x}^{3}{b}^{4}d{e}^{3}+20020\,{x}^{2}{a}^{2}{b}^{2}{e}^{4}-7280\,{x}^{2}a{b}^{3}d{e}^{3}+1120\,{x}^{2}{b}^{4}{d}^{2}{e}^{2}+17160\,x{a}^{3}b{e}^{4}-11440\,x{a}^{2}{b}^{2}d{e}^{3}+4160\,xa{b}^{3}{d}^{2}{e}^{2}-640\,x{b}^{4}{d}^{3}e+6006\,{a}^{4}{e}^{4}-6864\,d{e}^{3}{a}^{3}b+4576\,{a}^{2}{b}^{2}{d}^{2}{e}^{2}-1664\,a{b}^{3}{d}^{3}e+256\,{b}^{4}{d}^{4}}{15015\,{e}^{5} \left ( bx+a \right ) ^{3}} \left ( ex+d \right ) ^{{\frac{5}{2}}} \left ( \left ( bx+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x+a)*(e*x+d)^(3/2)*(b^2*x^2+2*a*b*x+a^2)^(3/2),x)

[Out]

2/15015*(e*x+d)^(5/2)*(1155*b^4*e^4*x^4+5460*a*b^3*e^4*x^3-840*b^4*d*e^3*x^3+10010*a^2*b^2*e^4*x^2-3640*a*b^3*
d*e^3*x^2+560*b^4*d^2*e^2*x^2+8580*a^3*b*e^4*x-5720*a^2*b^2*d*e^3*x+2080*a*b^3*d^2*e^2*x-320*b^4*d^3*e*x+3003*
a^4*e^4-3432*a^3*b*d*e^3+2288*a^2*b^2*d^2*e^2-832*a*b^3*d^3*e+128*b^4*d^4)*((b*x+a)^2)^(3/2)/e^5/(b*x+a)^3

________________________________________________________________________________________

Maxima [B]  time = 1.17126, size = 659, normalized size = 2.5 \begin{align*} \frac{2 \,{\left (105 \, b^{3} e^{5} x^{5} - 16 \, b^{3} d^{5} + 88 \, a b^{2} d^{4} e - 198 \, a^{2} b d^{3} e^{2} + 231 \, a^{3} d^{2} e^{3} + 35 \,{\left (4 \, b^{3} d e^{4} + 11 \, a b^{2} e^{5}\right )} x^{4} + 5 \,{\left (b^{3} d^{2} e^{3} + 110 \, a b^{2} d e^{4} + 99 \, a^{2} b e^{5}\right )} x^{3} - 3 \,{\left (2 \, b^{3} d^{3} e^{2} - 11 \, a b^{2} d^{2} e^{3} - 264 \, a^{2} b d e^{4} - 77 \, a^{3} e^{5}\right )} x^{2} +{\left (8 \, b^{3} d^{4} e - 44 \, a b^{2} d^{3} e^{2} + 99 \, a^{2} b d^{2} e^{3} + 462 \, a^{3} d e^{4}\right )} x\right )} \sqrt{e x + d} a}{1155 \, e^{4}} + \frac{2 \,{\left (1155 \, b^{3} e^{6} x^{6} + 128 \, b^{3} d^{6} - 624 \, a b^{2} d^{5} e + 1144 \, a^{2} b d^{4} e^{2} - 858 \, a^{3} d^{3} e^{3} + 105 \,{\left (14 \, b^{3} d e^{5} + 39 \, a b^{2} e^{6}\right )} x^{5} + 35 \,{\left (b^{3} d^{2} e^{4} + 156 \, a b^{2} d e^{5} + 143 \, a^{2} b e^{6}\right )} x^{4} - 5 \,{\left (8 \, b^{3} d^{3} e^{3} - 39 \, a b^{2} d^{2} e^{4} - 1430 \, a^{2} b d e^{5} - 429 \, a^{3} e^{6}\right )} x^{3} + 3 \,{\left (16 \, b^{3} d^{4} e^{2} - 78 \, a b^{2} d^{3} e^{3} + 143 \, a^{2} b d^{2} e^{4} + 1144 \, a^{3} d e^{5}\right )} x^{2} -{\left (64 \, b^{3} d^{5} e - 312 \, a b^{2} d^{4} e^{2} + 572 \, a^{2} b d^{3} e^{3} - 429 \, a^{3} d^{2} e^{4}\right )} x\right )} \sqrt{e x + d} b}{15015 \, e^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="maxima")

[Out]

2/1155*(105*b^3*e^5*x^5 - 16*b^3*d^5 + 88*a*b^2*d^4*e - 198*a^2*b*d^3*e^2 + 231*a^3*d^2*e^3 + 35*(4*b^3*d*e^4
+ 11*a*b^2*e^5)*x^4 + 5*(b^3*d^2*e^3 + 110*a*b^2*d*e^4 + 99*a^2*b*e^5)*x^3 - 3*(2*b^3*d^3*e^2 - 11*a*b^2*d^2*e
^3 - 264*a^2*b*d*e^4 - 77*a^3*e^5)*x^2 + (8*b^3*d^4*e - 44*a*b^2*d^3*e^2 + 99*a^2*b*d^2*e^3 + 462*a^3*d*e^4)*x
)*sqrt(e*x + d)*a/e^4 + 2/15015*(1155*b^3*e^6*x^6 + 128*b^3*d^6 - 624*a*b^2*d^5*e + 1144*a^2*b*d^4*e^2 - 858*a
^3*d^3*e^3 + 105*(14*b^3*d*e^5 + 39*a*b^2*e^6)*x^5 + 35*(b^3*d^2*e^4 + 156*a*b^2*d*e^5 + 143*a^2*b*e^6)*x^4 -
5*(8*b^3*d^3*e^3 - 39*a*b^2*d^2*e^4 - 1430*a^2*b*d*e^5 - 429*a^3*e^6)*x^3 + 3*(16*b^3*d^4*e^2 - 78*a*b^2*d^3*e
^3 + 143*a^2*b*d^2*e^4 + 1144*a^3*d*e^5)*x^2 - (64*b^3*d^5*e - 312*a*b^2*d^4*e^2 + 572*a^2*b*d^3*e^3 - 429*a^3
*d^2*e^4)*x)*sqrt(e*x + d)*b/e^5

________________________________________________________________________________________

Fricas [A]  time = 1.02487, size = 702, normalized size = 2.66 \begin{align*} \frac{2 \,{\left (1155 \, b^{4} e^{6} x^{6} + 128 \, b^{4} d^{6} - 832 \, a b^{3} d^{5} e + 2288 \, a^{2} b^{2} d^{4} e^{2} - 3432 \, a^{3} b d^{3} e^{3} + 3003 \, a^{4} d^{2} e^{4} + 210 \,{\left (7 \, b^{4} d e^{5} + 26 \, a b^{3} e^{6}\right )} x^{5} + 35 \,{\left (b^{4} d^{2} e^{4} + 208 \, a b^{3} d e^{5} + 286 \, a^{2} b^{2} e^{6}\right )} x^{4} - 20 \,{\left (2 \, b^{4} d^{3} e^{3} - 13 \, a b^{3} d^{2} e^{4} - 715 \, a^{2} b^{2} d e^{5} - 429 \, a^{3} b e^{6}\right )} x^{3} + 3 \,{\left (16 \, b^{4} d^{4} e^{2} - 104 \, a b^{3} d^{3} e^{3} + 286 \, a^{2} b^{2} d^{2} e^{4} + 4576 \, a^{3} b d e^{5} + 1001 \, a^{4} e^{6}\right )} x^{2} - 2 \,{\left (32 \, b^{4} d^{5} e - 208 \, a b^{3} d^{4} e^{2} + 572 \, a^{2} b^{2} d^{3} e^{3} - 858 \, a^{3} b d^{2} e^{4} - 3003 \, a^{4} d e^{5}\right )} x\right )} \sqrt{e x + d}}{15015 \, e^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="fricas")

[Out]

2/15015*(1155*b^4*e^6*x^6 + 128*b^4*d^6 - 832*a*b^3*d^5*e + 2288*a^2*b^2*d^4*e^2 - 3432*a^3*b*d^3*e^3 + 3003*a
^4*d^2*e^4 + 210*(7*b^4*d*e^5 + 26*a*b^3*e^6)*x^5 + 35*(b^4*d^2*e^4 + 208*a*b^3*d*e^5 + 286*a^2*b^2*e^6)*x^4 -
 20*(2*b^4*d^3*e^3 - 13*a*b^3*d^2*e^4 - 715*a^2*b^2*d*e^5 - 429*a^3*b*e^6)*x^3 + 3*(16*b^4*d^4*e^2 - 104*a*b^3
*d^3*e^3 + 286*a^2*b^2*d^2*e^4 + 4576*a^3*b*d*e^5 + 1001*a^4*e^6)*x^2 - 2*(32*b^4*d^5*e - 208*a*b^3*d^4*e^2 +
572*a^2*b^2*d^3*e^3 - 858*a^3*b*d^2*e^4 - 3003*a^4*d*e^5)*x)*sqrt(e*x + d)/e^5

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b x\right ) \left (d + e x\right )^{\frac{3}{2}} \left (\left (a + b x\right )^{2}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)**(3/2)*(b**2*x**2+2*a*b*x+a**2)**(3/2),x)

[Out]

Integral((a + b*x)*(d + e*x)**(3/2)*((a + b*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [B]  time = 1.23516, size = 756, normalized size = 2.86 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x+a)*(e*x+d)^(3/2)*(b^2*x^2+2*a*b*x+a^2)^(3/2),x, algorithm="giac")

[Out]

2/45045*(12012*(3*(x*e + d)^(5/2) - 5*(x*e + d)^(3/2)*d)*a^3*b*d*e^(-1)*sgn(b*x + a) + 2574*(15*(x*e + d)^(7/2
) - 42*(x*e + d)^(5/2)*d + 35*(x*e + d)^(3/2)*d^2)*a^2*b^2*d*e^(-2)*sgn(b*x + a) + 572*(35*(x*e + d)^(9/2) - 1
35*(x*e + d)^(7/2)*d + 189*(x*e + d)^(5/2)*d^2 - 105*(x*e + d)^(3/2)*d^3)*a*b^3*d*e^(-3)*sgn(b*x + a) + 13*(31
5*(x*e + d)^(11/2) - 1540*(x*e + d)^(9/2)*d + 2970*(x*e + d)^(7/2)*d^2 - 2772*(x*e + d)^(5/2)*d^3 + 1155*(x*e
+ d)^(3/2)*d^4)*b^4*d*e^(-4)*sgn(b*x + a) + 15015*(x*e + d)^(3/2)*a^4*d*sgn(b*x + a) + 1716*(15*(x*e + d)^(7/2
) - 42*(x*e + d)^(5/2)*d + 35*(x*e + d)^(3/2)*d^2)*a^3*b*e^(-1)*sgn(b*x + a) + 858*(35*(x*e + d)^(9/2) - 135*(
x*e + d)^(7/2)*d + 189*(x*e + d)^(5/2)*d^2 - 105*(x*e + d)^(3/2)*d^3)*a^2*b^2*e^(-2)*sgn(b*x + a) + 52*(315*(x
*e + d)^(11/2) - 1540*(x*e + d)^(9/2)*d + 2970*(x*e + d)^(7/2)*d^2 - 2772*(x*e + d)^(5/2)*d^3 + 1155*(x*e + d)
^(3/2)*d^4)*a*b^3*e^(-3)*sgn(b*x + a) + 5*(693*(x*e + d)^(13/2) - 4095*(x*e + d)^(11/2)*d + 10010*(x*e + d)^(9
/2)*d^2 - 12870*(x*e + d)^(7/2)*d^3 + 9009*(x*e + d)^(5/2)*d^4 - 3003*(x*e + d)^(3/2)*d^5)*b^4*e^(-4)*sgn(b*x
+ a) + 3003*(3*(x*e + d)^(5/2) - 5*(x*e + d)^(3/2)*d)*a^4*sgn(b*x + a))*e^(-1)